3.1077 \(\int \frac {(2-5 x) x^{3/2}}{(2+5 x+3 x^2)^{5/2}} \, dx\)

Optimal. Leaf size=187 \[ \frac {1450 \sqrt {x} (3 x+2)}{9 \sqrt {3 x^2+5 x+2}}-\frac {2 \sqrt {x} (2175 x+1831)}{9 \sqrt {3 x^2+5 x+2}}+\frac {2 \sqrt {x} (95 x+74)}{9 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {598 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}-\frac {1450 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{9 \sqrt {3 x^2+5 x+2}} \]

[Out]

2/9*(74+95*x)*x^(1/2)/(3*x^2+5*x+2)^(3/2)+1450/9*(2+3*x)*x^(1/2)/(3*x^2+5*x+2)^(1/2)-2/9*(1831+2175*x)*x^(1/2)
/(3*x^2+5*x+2)^(1/2)-1450/9*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*(
(2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)+598/3*(1+x)^(3/2)*(1/(1+x))^(1/2)*EllipticF(x^(1/2)/(1+x)^(1/2),1/2*I
*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {818, 822, 839, 1189, 1100, 1136} \[ \frac {1450 \sqrt {x} (3 x+2)}{9 \sqrt {3 x^2+5 x+2}}-\frac {2 \sqrt {x} (2175 x+1831)}{9 \sqrt {3 x^2+5 x+2}}+\frac {2 \sqrt {x} (95 x+74)}{9 \left (3 x^2+5 x+2\right )^{3/2}}+\frac {598 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}-\frac {1450 \sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{9 \sqrt {3 x^2+5 x+2}} \]

Antiderivative was successfully verified.

[In]

Int[((2 - 5*x)*x^(3/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(2*Sqrt[x]*(74 + 95*x))/(9*(2 + 5*x + 3*x^2)^(3/2)) + (1450*Sqrt[x]*(2 + 3*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (2*
Sqrt[x]*(1831 + 2175*x))/(9*Sqrt[2 + 5*x + 3*x^2]) - (1450*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[A
rcTan[Sqrt[x]], -1/2])/(9*Sqrt[2 + 5*x + 3*x^2]) + (598*Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticF[ArcT
an[Sqrt[x]], -1/2])/(3*Sqrt[2 + 5*x + 3*x^2])

Rule 818

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*(2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*g
- c*(b*e*f + b*d*g + 2*a*e*g))*x))/(c*(p + 1)*(b^2 - 4*a*c)), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d +
e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2*a
*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m +
2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &&
RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 839

Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2, Subst[Int[(f +
 g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1100

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b -
q)*x^2)*Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)
])/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]

Rule 1136

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b -
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], (-2*q)/(b - q)])/(2*c*Sqrt[a + b*x^
2 + c*x^4]), x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {(2-5 x) x^{3/2}}{\left (2+5 x+3 x^2\right )^{5/2}} \, dx &=\frac {2 \sqrt {x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}+\frac {2}{9} \int \frac {-37+135 x}{\sqrt {x} \left (2+5 x+3 x^2\right )^{3/2}} \, dx\\ &=\frac {2 \sqrt {x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {2 \sqrt {x} (1831+2175 x)}{9 \sqrt {2+5 x+3 x^2}}-\frac {2}{9} \int \frac {-897-\frac {2175 x}{2}}{\sqrt {x} \sqrt {2+5 x+3 x^2}} \, dx\\ &=\frac {2 \sqrt {x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {2 \sqrt {x} (1831+2175 x)}{9 \sqrt {2+5 x+3 x^2}}-\frac {4}{9} \operatorname {Subst}\left (\int \frac {-897-\frac {2175 x^2}{2}}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )\\ &=\frac {2 \sqrt {x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}-\frac {2 \sqrt {x} (1831+2175 x)}{9 \sqrt {2+5 x+3 x^2}}+\frac {1196}{3} \operatorname {Subst}\left (\int \frac {1}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )+\frac {1450}{3} \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {2+5 x^2+3 x^4}} \, dx,x,\sqrt {x}\right )\\ &=\frac {2 \sqrt {x} (74+95 x)}{9 \left (2+5 x+3 x^2\right )^{3/2}}+\frac {1450 \sqrt {x} (2+3 x)}{9 \sqrt {2+5 x+3 x^2}}-\frac {2 \sqrt {x} (1831+2175 x)}{9 \sqrt {2+5 x+3 x^2}}-\frac {1450 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{9 \sqrt {2+5 x+3 x^2}}+\frac {598 \sqrt {2} (1+x) \sqrt {\frac {2+3 x}{1+x}} F\left (\tan ^{-1}\left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {2+5 x+3 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.25, size = 164, normalized size = 0.88 \[ \frac {10764 x^3+26830 x^2+344 i \sqrt {\frac {2}{x}+2} \sqrt {\frac {2}{x}+3} \left (3 x^2+5 x+2\right ) x^{3/2} F\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )+1450 i \sqrt {\frac {2}{x}+2} \sqrt {\frac {2}{x}+3} \left (3 x^2+5 x+2\right ) x^{3/2} E\left (i \sinh ^{-1}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )+21824 x+5800}{9 \sqrt {x} \left (3 x^2+5 x+2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 - 5*x)*x^(3/2))/(2 + 5*x + 3*x^2)^(5/2),x]

[Out]

(5800 + 21824*x + 26830*x^2 + 10764*x^3 + (1450*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*Ellip
ticE[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2] + (344*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(3/2)*(2 + 5*x + 3*x^2)*Ellipt
icF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2])/(9*Sqrt[x]*(2 + 5*x + 3*x^2)^(3/2))

________________________________________________________________________________________

fricas [F]  time = 0.94, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (5 \, x^{2} - 2 \, x\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x}}{27 \, x^{6} + 135 \, x^{5} + 279 \, x^{4} + 305 \, x^{3} + 186 \, x^{2} + 60 \, x + 8}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="fricas")

[Out]

integral(-(5*x^2 - 2*x)*sqrt(3*x^2 + 5*x + 2)*sqrt(x)/(27*x^6 + 135*x^5 + 279*x^4 + 305*x^3 + 186*x^2 + 60*x +
 8), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {{\left (5 \, x - 2\right )} x^{\frac {3}{2}}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="giac")

[Out]

integrate(-(5*x - 2)*x^(3/2)/(3*x^2 + 5*x + 2)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 0.13, size = 297, normalized size = 1.59 \[ -\frac {\left (39150 x^{4}+98208 x^{3}-2175 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, x^{2} \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+1143 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, x^{2} \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+80460 x^{2}-3625 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, x \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+1905 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, x \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+21528 x -1450 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticE \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )+762 \sqrt {6 x +4}\, \sqrt {3 x +3}\, \sqrt {6}\, \sqrt {-x}\, \EllipticF \left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right ) \sqrt {3 x^{2}+5 x +2}}{27 \left (x +1\right )^{2} \left (3 x +2\right )^{2} \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x)

[Out]

-1/27*(1143*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2-2175*(6*
x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x^2+1905*(6*x+4)^(1/2)*(3*x
+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))*x-3625*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)
*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))*x+762*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*Ellipt
icF(1/2*(6*x+4)^(1/2),I*2^(1/2))-1450*(6*x+4)^(1/2)*(3*x+3)^(1/2)*6^(1/2)*(-x)^(1/2)*EllipticE(1/2*(6*x+4)^(1/
2),I*2^(1/2))+39150*x^4+98208*x^3+80460*x^2+21528*x)*(3*x^2+5*x+2)^(1/2)/x^(1/2)/(x+1)^2/(3*x+2)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\int \frac {{\left (5 \, x - 2\right )} x^{\frac {3}{2}}}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x^(3/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="maxima")

[Out]

-integrate((5*x - 2)*x^(3/2)/(3*x^2 + 5*x + 2)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ -\int \frac {x^{3/2}\,\left (5\,x-2\right )}{{\left (3\,x^2+5\,x+2\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^(3/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2),x)

[Out]

-int((x^(3/2)*(5*x - 2))/(5*x + 3*x^2 + 2)^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-5*x)*x**(3/2)/(3*x**2+5*x+2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________